您所在的位置: 首页» 文章» 江西专升本高等数学:函数的极限和连续

江西专升本高等数学:函数的极限和连续

江西专升本数学考试应该怎么备考?江西专升本网为各位考生提供江西专升本数学内容的备考知识点,助力广大考生备考。

(一)函数、极限和连续

1.函数

(1)理解函数的概念:函数的定义,函数的表示法,分段函数。

(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。

(3)了解反函数:反函数的定义,反函数的图象。

(4)掌握函数的四则运算与复合运算。

(5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。

(6)了解初等函数的概念。

2.极限

(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。

(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。

(4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。

(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。

(6)熟练掌握用两个重要极限求极限的方法。

3.连续

(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。

(2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。

(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单。

(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。

Catfish(鲶鱼) CMS V 5.8.0